SCR Device With Double-Triggered Technique for On-Chip ESD Protection in Sub-Quarter-Micron Silicided CMOS Processes
نویسنده
چکیده
Turn-on efficiency is the main concern for silicon-controlled rectifier (SCR) devices used as on-chip electrostatic discharge (ESD) protection circuit, especially in deep sub-quarter-micron CMOS processes with much thinner gate oxide. A novel double-triggered technique is proposed to speed up the turn-on speed of SCR devices for using in on-chip ESD protection circuit to effectively protect the much thinner gate oxide in sub-quarter-micron CMOS processes. From the experimental results, the switching voltage and turn-on time of such double-triggered SCR (DT_SCR) device has been confirmed to be significantly reduced by this double-triggered technique.
منابع مشابه
Substrate-Triggered SCR Device for On-Chip ESD Protection in Fully Silicided Sub-0.25- m CMOS Process
The turn-on mechanism of a silicon-controlled rectifier (SCR) device is essentially a current triggering event. While a current is applied to the base or substrate of the SCR device, it can be quickly triggered into its latching state. In this paper, a novel design concept to turn on the SCR device by applying the substrate-triggered technique is first proposed for effective on-chip electrostat...
متن کاملImplementation of Initial-On ESD Protection Concept With PMOS-Triggered SCR Devices in Deep-Submicron CMOS Technology
In order to enhance the applications of SCR devices for deep-submicron CMOS technology, a novel SCR design with “initial-on” function is proposed to achieve the lowest trigger voltage and the highest turn-on efficiency of SCR device for effective on-chip ESD protection. Without using the special native device (NMOS with almost zero or even negative threshold voltage) or any process modification...
متن کاملActive Electrostatic Discharge (ESD) Device for On-Chip ESD Protection in Sub-Quarter-Micron Complementary Metal-Oxide Semiconductor (CMOS) Process
A novel electrostatic discharge (ESD) protection device with a threshold voltage of 0V for complementary metal-oxide semiconductor (CMOS) integrated circuits in sub-quarter-micron CMOS technology is proposed. Quite different to the traditional ESD protection devices, such an active ESD device is originally standing in its turn-on state when the IC is zapped under ESD events. Therefore, such an ...
متن کاملESD Protection Design for Mixed-Voltage I/O Circuit with Substrate-Triggered Technique in Sub-Quarter-Micron CMOS Process
A substrate-triggered technique is proposed to improve ESD protection efficiency of the stacked-NMOS device in the mixed-voltage I/O circuit. The substrate-triggered technique can further lower the trigger voltage of the stacked-NMOS device to ensure effective ESD protection for the mixed-voltage I/O circuit. The proposed ESD protection circuit with the substrate-triggered technique for 2.5V/3....
متن کاملDummy-Gate Structure to Improve Turn-on Speed of Silicon-Controlled Rectifier (SCR) Device for Effective Electrostatic Discharge (ESD) Protection
Turn-on speed is the main concern for on-chip electrostatic discharge (ESD) protection device, especially in deep submicron complementary metal-oxide semiconductors (CMOS) processes with ultra-thin gate oxide. A novel dummy-gate-blocking silicon-controlled rectifier (SCR) device with substrate-triggered technique is proposed to improve the turn-on speed of SCR device for using in on-chip ESD pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001